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Abstract

For over a decade, JPL has been actively involved in soft computing research on theory, architecture,
applications, and electronics hardware. The driving force in all our research activities, in addition to
the potential enabling technology promise, has been creation of a niche that imparts orders of magnitude
speed advantage by implementation in parallel processing hardware with algorithms made especially
suitable for hardware implementation. We review our work on neural networks, fuzzy logic, and
evolvable hardware with selected application examples requiring real time response capabilities.
Hardware designs include neural network chips performing object classifications for surface mappings
and route determination, and high speed target recognition when neural ICs are stacked 64-thick as a
sugar-cube, providing image correlation capabilities with nearly 1 tera-operations per second speed.
Sensor data fusion requirement for multisensor scenario has led to development in fuzzy set hardware
with three orders of magnitude speed advantage. Recently, genetic algorithm development for evolvable
hardware systems implemented on suitable electronic hardware has shown very exciting high speed
evolution of various digital and analog circuits as well as solution of T-norms and S-norms with fuzzy
processing on a single test chip. The detuils of the hardware architecture and chip test results are
described in this paper. Some of the details of processing are omitted; however, relevant references are
provided.
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1 INTRODUCTION

The Jet Propulsion Laboratory (JPL) is conducting research in various aspects of information processing. For the
past fifteen years, JPL has been actively pursuing soft computing research involving theory, architecture,
applications, and electronics hardware. The driving force in all our research activities has been two-fold: the
potential enabling technology promise; and an innovation in performance that would provide orders of magnitude
speed advantage by implementation in parallel-processing hardware. During early neural networks revival stage in
the eighties, a building block synapse and neuron architecture was designed and tested [1-2]. This design with later
improvements became the center-piece of a varied electronic circuitry, providing high data-processing speed and
low power consumption at individual synapse and neuron levels, as well as for the overall subsystem. It provided a
power-miser data processing circuit, which formed the basis for a multi-layer perceptron (MLP) architecture [3-4].
A more recent neural network design was used to stack a multi-chip module (64 identical chips) in a 3D
configuration (sugar cube size) for high-speed image processing [5]. Further advancement of the architecture has
been an innovation in algorithm towards on-chip learning, leading to 0.18um feature size and silicon-on-insulator
technology [6].

Later, computational intelligence techniques, such as fuzzy logic and neural networks combined with the more
traditional Artificial Intelligence paradigm of expert systems proved efficient in solving a category of problems for
which an accurate mathematical formulation of models was either not feasible or practically impossible to compute
in useful time. Using these soft-computing paradigms, an architecture was evolved for sensor and data fusion,
which was very effective in providing a solution in high-speed hardware. While these processors can be built both
in digital or analog hardware, the massive amount of interconnection lines of a parallel implementation and the
power requirements encountered in certain space, military or commercial applications such as hand-held devices
make the idea of an analog ASIC processor preferable. An example of such an application requiring low power and
fast processing of multi-sensor data is associated with the solution of object discrimination performed onboard a fast
frame seeker.

The high speed processing used the analog hardware technology of neural networks, fuzzy logic, and expert rule
with the conventional digital processing of a host computer. The individual modules were designed to be



reconfigurable and cascadable. In addition, the overall architecture was developed to be flexible enough for
rerouting of signals to any required processing module by having an interconnecting network with switching arrays.
We concentrate here on the fuzzy logic module. A new method of implementation of fuzzification resulted in a
compact and low power design [7].

Present focus starting last year is for the new research activity in Evolvable Hardware (EHW). An appreciable
amount of theoretical, algorithmic, modeling, and analytical work has been done. Further, a test chip has been
fabricated, tested, and used successfully in various circuit evolution experiments [8]. Presently, genetic
programming is being done in simulation; however, design work is ongoing to integrate it along with the evolvable
circuits on a single chip.

A description of these activities along with the motivation brought on by required applications is described in brief.
Selected results of the hardware implementation are presented. EHW work is described in greater details, again not
only for the speed advantage but also its potential for system evolution leading to long-life mission-enabling nature.

2 AUTOMATIC TARGET RECOGNITION

Problems associated with automatic target recognition (ATR) have defied real time solutions for decades. Despite
recent progress in microprocessor technology, deployable systems to-date are either bulky, power hungry, or not
capable of providing reliable target recognition and tracking in real time. Parallel computer systems capable of
giga-operations/s, such as Adaptive Solutions’ CNAPS array processors could perform convolution with a small
kernel (3x3 or 8x8) in real time. However, achieving general object recognition from video in real time with a
reasonable template size (32x32 or larger) is still beyond today’s computer/processor technology [9]. Optical
correlators designed for distortion-invariant pattern recognition are an attractive alternative for achieving massively
parallel processing with photons [10]. However, they have yet to overcome many performance and system issues,
such as signal-to-noise, discrimination ability, programmability and limitations of available spatial light modulators,
post-processing of correlation outputs, and packaging. This prevents the realization of a flexible, robust optical
processor for ATR.

2.1 ATR Testbed

Our approach is based on 3D IC chip architecture that is capable of processing any size image (whether IR, UV, or
visible) by sequentially inputting consecutive 64x64 windows and performing high speed convolutions with 64
prestored 64x64 image templates. The data processing architecture, which provides an image processing system in a
small package and is suitable for ATR was designed and executed as a testbed [11]. This integrated testbed
incorporates an advanced artificial neural network processor and several new sensors covering the spectral range
from ultraviolet (UV) through infrared (IR). The convolution inner-product outputs are fed to a 64-input neural
network trained to recognize and classify objects (number of NN outputs aepend on number of objects to be
classified).

2.2  Analog Neural Networks

On the image data-processing side, the neural network advances have led to chip implementations that have been
assembled into innovative, three-dimensional architectures capable of data processing speeds with 10'* operations
per second (OPS) and running 64 image-based convolutions (with 64x64 kernel size) in real time. 3D Artificial
Neural Network (3DANN) is a sugar-cube-sized, low-power neuroprocessor with its IC stack [12-13] with its 64
outputs coupled to a 64-input neural network, presently implemented using a SHARC parallel processor. The main
convolution processor is a fully testable 64-chip cube that allows processing of any size image by acquisition and
working on a 64x64 window at a time.

The main contribution for the testbed has been the convolution engine as the neuroprocessor, barticularly designed
to aid in recognition of shapes in resolved images at extremely high speeds (10' OPS). As mentioned earlier,
3DANN uses a synapse design based on Multiplying Digital-to-Analog Converter (MDAC) technology using a
hybrid approach reported in detail in Refs. [2,4]. Each circuit is digitally programmable, has an 8-bit resolution
digital weight storage, and is an analog multiplier with a voltage-input/current-output configuration [14]. In it, 64
complete inner products, each with a 4096 (i.e., 64x64) input array can be accomplished in 250 nanoseconds (i.e.,
~10'* multiply and add operations in 1 second. As a comparison, the convolution operations on a 256x256 image
would take 16 milliseconds using 3DANN. However, the same processing would take about 2.5 hours using



SPARC-10, and a few minutes with parallel processor such as SHARC. As can be seen, the hardware provides quite
a few orders of magnitude speed advantage.

2.2.1  Building Block Chips

We first describe the MDAC design for the synapse here. The designs have been geared towards low power and
compact implementations. Analog current summation of multiple synapses can easily be done on a connection wire
and, if required, can be fed as input to a neuron. Further, the neurons provide an output as a voltage signal which,
with multiple fan-outs, can be distributed in a fully parallel fashion to a number of synapses through connection
wires.

2.2.2  Synapse Chip Design

Our synapse chip design is a 64x64 synaptic crossbar matrix with 64 input and 64 output lines. A synapse is placed
at each node of the matrix. For ease of weight downloading using a host computer, a digital scheme has been used
for weight storage. The synapse design is based on a static random access memory (SRAM) with 7 bits (6 bits +
sign bit) of resolution having two-quadrant current multipliers as DACs. In Figure 1, the circuit containing the
digital switches DO to D5 represent the MDAC. Decoders for row/column selection and address/data lines are
included for random accessibility and programmability as shown within the inset, which determine the weight Wij'

Input signal is fed as analog voitage Vjp, which is converted as an equivalent current Ij, and fed through current
mirrors to all the synapses along that row. Each synapse then multiplies Ijn with its own digitally stored multibit
weight, Wjj. As shown in Figure 1, the weight multiplication is obtained through one or more of the six parallel
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Figure 1. Synapse circuit containing voltage to current input stage, multi-bit Multiplying Digital to Analog
Converter (MDAC), and a multi-bit digital memory.



stages of cascode current mirrors by selective operation of the digital latches DO through D5 already performed
during the previous weight storage operation. By using the upper current steering circuit and by programming of the
latch (D6 - D6bar), the sign bit is obtained with a positive or negative current flow as sinked or sourced.

Similarly, an 8-bit synapse would require an additional bit with a set of cascode stages adding to the digital logic as
well. To conserve on space, a slight modification was used by splitting the digital bits into a coarse and a fine set of
cascode columns with two sets of current mirrors. The input current to one current mirror was Iin and that of the
other was made 64*lin by suitably altering the design of one of the two input transistors. However, the same
voltage Vin was fed at both inputs.

2.3  Functional Description Of Analog Processing

The 64 analog voltage inputs first get converted to currents by a set of V-I converters at the beginning of each row
of the 64 x 64 synaptic array. These signals are then current mirrored into all 64 synapses along the row so that all
the synapses in a given row receive an identical input [15].

A byte, which controls switches to scale current copies of the input, is stored in a local static memory (SRAM) for
each synapse. By switching in different multiples of the input current and adding them together, the input current is
effectively multiplied by the digital weight stored in the local SRAM. Synapses on the same column have their
outputs, Iout, summed by attaching them all to the same wire. These 64 summed signals, one for each column of the
array, are then sent directly out every 250 nanoseconds as shown in Figure 2 [13-14]. In the 3D scheme, respective
column outputs of all the 64 chips are added together through edge-wise metallization, so that a 64x64 incoming
image multiplies with 64, 64x64 templates on 64 chips to provide 64 analog inner-product current outputs. The
process is repeated by consecutively inputting the adjoining 64x64 image windows, “row-by-row” and “column-by-
column”, Thus a 256x256-image convolution would be completed in about 16 milliseconds.
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Figure 2. The 3DANN consists of 64 layers of a 64x64-synapse array based on an 8-bit MDAC. It incorporates a
special-purpose image-write circuitry. 3D network is realized (as pictured) in a 10-gm, 3-cm’ package, with power
consumption of ~2.5W. The image loading is specially designed for rastering of a 64x64 window of a larger image
in the frame buffer and is synchronized with 3DANN’s 250-ns inner-product operations.



2.4  Digital Weight Programming:

Before the processing can begin. the synapse weights as 64x64templates are obtained separately. For this purpose,
an approach based on eigenvectors is employed. Since each data point (image) is a 4096-element vector, finding a
set of 4096 orthonormal eigenvectors is possible (64 of these can then reside on 3DANN at a time). Selecting the
most significant 64 eigenvectors constructed from principal component analysis of target imagery reduces
dimensionality of image sets, without iosing much of the information relevant for classification. The selected 64
templates are loaded single row at a time. The data for a given row is clocked into a 64 long, 8-bit wide shift
register, one byte at a time. After 64 clock cycles, the data for an entire row of synapses is ready to be loaded into
the local memory of each MDAC. A 6-bit row address is supplied and an active-low load signal is asserted, which
dumps the data into the synapses on the row specified. The register loads from the bottom up so that the first data
loaded corresponds to the first row. More details including its configuration as a recurrent neural network can be
found in the literature {4,153].

Incorporating a multi-synapse circuit as an analog multiplier makes the network extremely powerful image-
processing engine capable of carrying out in parallel 64 convolutions of the form:

Ci(x%y) =f(x,y) ® gi(xy); i=1,2,...,64; e))

where f is the input image, g; is the filter mask, and ¢; is the output image [11].

2.5  Processing Results:

Information about the object (its class, identity, or pose) is processed in a coarse-to-fine manner. For instance, after
detecting an object in a frame, a rough estimate of image pose/scale is made, a result that can then be used to limit
the variation that needs to be considered during object classification (i.e., plane, helicopter, and missile). Results
(Figure 3) using the technique described here have achieved nearly 97% detection rates, 94% classification rates for
determining the angle of the principle dimension of an object with respect to the image (£30°), and object
classification rates approaching 95%. Results on object/non-object image classification rates achieved with a
helicopter/missile/plane data set were also very encouraging {11].
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Figure 3. High detection/classification rates are achieved on selected data sets that include all possible orientations
and scales of targets.

3 SENSOR FUSION PROCESSOR

The Sensor Fusion Processor (SFP) was developed to seamlessly combine rule-based systems, fuzzy logic, and
neural networks to achieve parallel fusion of sensor data in compact low power VLSL. The first demonstration of



the concept was for the sensor fusion functionality; other applications, mainly in robotics and autonomous systems
were considered for the future. The main assumption behind SFP is that fuzzy, rule-based and neural forms of
computation can serve as the main primitives of an “intelligent” processor. Thus, in the same way classic processors
are designed to optimize the hardware implementation of a set of fundamental operations, SFP was developed as an
efficient implementation of computational intelligence primitives, and relied on a set of fuzzy set, fuzzy inference
and neural modules, built in programmable analog hardware. The hardware programmability allowed the processor
to reconfigure into different topologies, taking the most efficient hardware implementation during each phase of
information processing. Following software demonstrations on several sets of data, three important SFP building
blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) were fabricated in analog VLSI
hardware, which demonstrated microsecond level of processing times. The neural network module was designed on
the same basis as described earlier, except that the same chip also contained an amplifier as a neuron with nearly
sigmoidal transfer function. Here, we only describe the hardware details of the fuzzy set processor as an example of
high speed processing. More details about the whole processor have already been presented in Ref. [7,16].

31 The Fuzzy Set Processor (FSP)

The main function of a fuzzy set processor is signal transformation, which can be interpreted, for example, as:

¢ fuzzification - i.e. association between an input crisp signal and a degree of membership to a fuzzy set/class; or

e signal conditioning/ non-linear transformation, coordinate transformation.

The FSP was designed as a processing module with 16 inputs of 5 membership classes each. The architecture of the
FSP is presented in Figure 4. The chip has 16 analog voltage inputs and 16x5 outputs, and allows digital
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Figure 4. Fuzzy Set Processor (FSP) architecture

programmability of the membership functions for each input variable. The membership functions have trapezoidal
shape, with programmable parameters for the legs and slopes as illustrated in Figure 5 inset. The position of the legs
can be specified with 8-bit resolution and the slope with 5-bit resolution. The equations that describe the output of a
trapezoidal membership function are:

IfX<=A, then Y = Low

If A <X =or < (CD+AB)/(B+C), then Y = MIN(BX-AB + Low, High)

If (CD+AB)/(B+C)< X <D, then Y = MIN(-CX + CD + Low, High)
If X>or=D, then Y= Low,

where A is the location of the left leg, B is the unsigned slope of the left leg, C is the unsigned slope of the right leg,
and D is the location of the right leg. The chip design currently uses Low = 1 volt and High = 4 volts with Vdd = 5
volts.

The schematic diagram in Figure 5 details the processing path of a single membership function circuit (MFC).
While inputs and outputs are in voltage mode for external compatibility, the internal MFC implementation is in
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Figure 5. Block diagram of HW implementation for a simple MFC

current-mode. The input voltage enters the first processing block, which is a Voltage to Current (V/I) converter.
Currents proportional to the digital values of the legs, A and D, are generated in Multiplying Digital to Analog
Converters (MDACs). The current corresponding to the left leg gets subtracted from a copy of the input current,
while a different copy of the input current gets subtracted from the right leg current. The resulting currents, which
correspond to the left and right sides of the trapezoid, enter their appropriate Dividing Digital to Analog Converter
(divDAC) where the signals are divided by 5-bit digital values to scale the slopes. The minimum of the two resulting
values is then selected which chooses the side that is along the trapezoid. The top of the trapezoid is achieved by
taking the minimum of the resulting current and the full-scale current, and this result is converted to the voltage
output of the MFC. A test chip for 2 input variables with 5 membership functions calculating the degree of

membership has been implemented and tested. A variety of membership functions generated by the chip are
illustrated in Figure 6 [16-17].

Figure 6. A variety of membership function shapes generated on the MFC test chip



The chip was used in an object discrimination/classification task and the results were compared with the software
implementation for accurate reproduction in hardware of the results obtained by simulation. The membership
functions were used to separate the spaces containing target objects and nonobjects. The software results showed
that signals processed using these membership functions resulted in discrimination of objects and nonobjects, as
well as discrimination of objects of different types, based on available data. The hardware tests showed that the
fuzzification/ discrimination of this type takes less than a microsecond as compared to milliseconds to seconds for |
software simulations. Thus, this test showed that at least three orders of magnitude speed advantage was obtained
by hardware over simulation. Further, if the problem size increases, the hardware takes the same time in parallel
processing, whereas the time of sequential computers in simulations increases.

4 EVOLVABLE HARDWARE

The application of evolution-inspired formalisms to hardware design and self-configuration lead to the concept of
evolvable hardware (EHW). In the narrow sense, EHW refers to self-reconfiguration of electronic hardware by
evolutionary/genetic reconfiguration mechanisms. In a broader sense, EHW refers to various forms of hardware
from sensors and antennas to complete evolvable space systems that could adapt to changing environments and,
moreover, increase their performance during their operational lifetime.

We describe evolution-oriented devices and an evolvable system on a chip. A Field Programmable Transistor Array
(FPTA) architecture is used as the experimental platform for evolutionary experiments. The platform is quite
flexible and supports implementation of both analog and digital circuits. While previous works [8,18-19] illustrated
the implementation of several conventional building blocks for electronic circuits such as logical gates,
transconductance amplifiers, filters, Gaussian neurons, etc., here we describe an automatic design of the rather more
unconventional circuits for combinatorial fuzzy logics.

In this part of our paper, we first present the components of an evolvable hardware system, and survey some
important evolutionary experiments and applications of evolvable hardware. We also describe an evolution-oriented
architecture based on the concept of FPTA, leading to an illustration of how the FPTA can be used to evolve
reconfigurable circuits for combinatorial fuzzy logic. Circuits implementing parametric triangular norms are evolved
in software and in hardware directly on the chip.

4.1  Evolutionary Synthesis Of Electronics

The main idea of evolutionary/genetic algorithms is inspired by the principle of natural selection. In nature the
fittest individuals survive and reproduce passing along their genetic material to their offspring, who will inherit the
characteristics that made the parents successful. Similarly, the evolution of artificial systems is based on a
population of competing designs, the best ones (i.e. the ones that come closer to meeting the design specifications)
being selected for further investigation. The offspring of this elite, in which pairs of parents were randomly selected
for “mating”, combine genetic material from two parents and may suffer genetic “mutations” (alternatively, in
asexual reproduction the genetic code from one successful individual may be inherited, possibly with some random
mutation). The offspring are new generation of competing designs. The process of trial-and-error parallel search can
last many generations, and be constructed with many choices on how to implement reproduction, selection, etc.

The concept of evolvable hardware was born partially inspired by search/optimization/adaptation mechanisms and
partially by the possibility of a design of reconfigurable devices such as Field Programmable Gate Arrays (FPGA).
Circuits can be evolved by reconfiguring programmable devices (this is termed intrinsic EHW) or by evolution
using software models — descriptions of the electronic H/W (referred to as extrinsic EHW).

Figure 7 illustrates the main steps of evolutionary design for electronic circuits. Each candidate circuit design is
associated with a "genetic code" or chromosome. The simplest representation of a chromosome is a binary string, a
succession of Os and 1s that encode a circuit. The first step of evolutionary synthesis is to generate a random
population of chromosomes. The chromosomes are then converted into a model that gets simulated (e.g. by a circuit
simulator such as SPICE) and produces responses that are compared against specifications.
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Figure 7. Evolutionary synthesis of electronic circuits

A solution determined by extrinsic evolution may eventually be downloaded or become blueprint for hardware. In
intrinsic evolution the chromosomes are converted into control bitstrings, which are downloaded to program the
reconfigurable device. The configuration bitstring determines the functionality of the cells of the programmable
device and the interconnection pattern between cells. Circuit responses are compared against specifications of a
target response and individuals are ranked based on how close they come to satisfying it. Preparation for a new
iteration loop involves generation of a new population of individuals from the pool of the best individuals in the
previous generation. Here, some individuals are taken as they were and some are modified by genetic operators,
such as crossover and mutation. The process is repeated for a number of generations, resulting in increasingly better
individuals. The process is usually ended after a given number of generations, or when the closeness to the target
response has been reached. In practice, one or several solutions may be found among the individuals of the last
generation.

4.2  Evolutionary Experiments

A variety of circuits have been synthesized through evolution and reported in literature {20-23]. Evolutions of
analog circuits reported in [20] were performed in simulations, without concern for a physical implementation, but
rather as a proof-of-concept to show that evolution can lead to designs that compete with human designs, or even
exceed them in performance.

Current programmable analog devices are very limited in capabilities and do not support the implementation of the
designs resulted in simulations (but, in principle, one can test their validity in circuits built from discrete
components, or in an ASIC). More recently, intrinsic evolutionary experiments were performed on commercial Field
Programmable Analog Arrays (FPAA), custom-designed ASIC as well as other devices.

Obtaining circuit designs through evolution requires many evaluations. Since analog programmable devices,
flexible enough for the purpose of EHW are not available commercially, researchers have one of two options: Use
simulations or build their own devices that can evolve. SPICE simulations have to solve differential equations and
scale badly with increase in the number of nodes in a circuit. For example, a transient analysis simulation for a
circuit with ~100 transistors takes about 1 second on a SUN computer.

We chose the second option and built silicon devices for evolution experiments using electronic circuits. To
illustrate the speed advantage, the same circuit mentioned above that takes 1 second for simulation on SUN
computer responds in ~100 ns when evolving hardware is used. Depending on the data acquisition system,
including the speed of the a/d converters for acquiring a sufficient number of samples, we can estimate ~10us to 1
ms as the evolution response time. Note, however, that this H/W approach is size independent and the same time
would be required even for a circuit 100 times bigger while in software it would require ~10,000 times more time.

43  Building An Evolvable System-On-A-Chip

The efforts toward hardware evolution have been limited to simple circuits. In particular, for analog circuits, this
limitation comes from a lack of appropriate reconfigurable analog devices to support the search, which precludes



searches directly in hardware and requires evolving in software on hardware device models. Such models require
evaluation with circuit simulators such as SPICE; the simulators need to solve differential equations and, for
anything beyond simple circuits, they require too much time for practical searches of millions of circuit solutions. A
hardware implementation is expected to offer a substantial advantage in circuit evaluation time; in certain cases the
time for hardware evaluation could be seconds instead of days as in case of evaluation in software.

For efficiency of EHW applications, future reconfigurable devices would benefit from implementing evolution-
oriented reconfigurable architectures (EORA). One of the most important features for EORA relates to the
granularity of the programmable chip. FPAA offer only coarse granularity, which is a clear limitation; FPGAs are
offered both in versions with coarse grained and fine-grained architectures (going to gate level as the lowest level of
granularity). From the EHW perspective, it is interesting to have programmable granularity, allowing the sampling
of novel architectures together with the possibility of implementing standard ones. The optimal choice of elementary
block type and granularity is task dependent. At least for experimental work in EHW, it appears a good choice to
build reconfigurable hardware based on elements of the lowest level of granularity. Virtual higher-level building
blocks can be considered by imposing programming constraints. Ideally, the “virtual blocks” for evolution should be
automatically defined/clustered during evolution. In addition EORA should be transparent architectures, allowing
the analysis and simulation of the evolved circuits. They should also be robust enough not to be damaged by any
configuration existent in the search space, potentially sampled by evolution. Finally, EORA should allow evolution
of both analog and digital circuits.

An evolvable system-on-a-chip architecture is suggested in Figure 8. The main components are a Field
Programmable Transistor Array and a Genetic Processor. The idea of a field programmable transistor array was
introduced as a first step toward EORA [24]. The FPTA is a concept design for hardware reconfigurable at transistor
ievel. As both analog and digital CMOS circuits ultimately rely on functions implemented with transistors, the
FPTA appears as a versatile platform for the synthesis of both analog and digital (and mixed-signal) circuits. The
architecture is cellular, and has similarities with other cellular architectures as encountered in FPGAs (e.g. Xilinx
X6200 family) or cellular neural networks. One key distinguishing characteristic relates to the definition of the
elementary cell. The architecture is largely a “sea of transistors” with interconnections implemented by other
transistors acting as signal passing devices (gray-level switches), and with islands of RC resources in-between.

Figure 9 illustrates an FPTA cell consisting of 8 transistors and 24 programmable switches. The status of the
switches (ON or OFF) determines a circuit topology and consequently a specific response. Thus, the topology can be

FPTA ~ Array of
Cells
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Figure 8. Schematic of an evolvable System-On-Chip. Figure 9. Module of the Field
Programmable Transistor Array.
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considered as a function of switch states, and can be represented by a binary sequence, such as “1011...” where by
convention one can assign 1 to a switch turned ON and 0 to a switch turned OFF. Programming the switches ON
and OFF defines a circuit for which the effects of non-zero, finite impedance of the switches can be neglected in the
first approximation (for low frequency circuits).

4.4  Evolving Reconfigurable Circuits For Fuzzy Logic
This section illustrates the evolutionary design of infinitesimal multi-valued logic circuits, more precisely circuits
for fuzzy logic. The objective is to determine circuit implementations for conjunctions and disjunctions for fuzzy
logic. In such logic, conjunction and disjunction are usually interpreted by a T-norm and by its dual T-conorm (S-
norm) respectively. A function T: [0,1] x [0,1] => [0,1] is called a triangular norm (T-norm for short) if it satisfies
the following conditions:

associativity (T(x,T(y,z)) = T(T(x,y),z)),

commutativity (T(x,y) = T(y,x)),

monotonicity (T(x,y) < T(x,z), whenever y < z), and

boundary condition (T(x,1) = x).
A function S: [0,1] x [0,1] => {0,1] is called a triangular conorm (T-conorm or S-norm for short) if it satisfies the
conditions of associativity, commutativity, monotonicity, and the boundary condition S(x, 0) = x. S and T are
corresponding (or pairs) if they comply with De Morgan's laws. Frank’s parametric T-norms and T-conorms (also
referred to as fundamental T-norms/conorms in [25]) were the selected choice for modeling the logical connectives.
The family of Frank T-norms is given by

MIN(X,y) if(s=0)
X.y if(s=1) 1
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The family of Frank T-conorms is given by
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Electronic circuits implementing the above equations can be used in implementations of fuzzy logic computations or
in implementing fuzzy S-T-norm neurons. One interesting application made possible in this implementation is the
selection of the most appropriate s-parameter for the application at hand. Examples of the influence of various T-
norms and S-norms in fuzzy control and automated reasoning applications can be found in [26-27] and for learning
in fuzzy neurons in [28].

4.5  Evolution Results
The following preliminary results illustrate the possibility of evolving circuits that implement T and S for various
values of the parameter s. The circuits were powered at SV and the signal excursion was chosen between 1V (for

logical level “0”) and 4V (for logical level “1”). Intermediary values were in linear correspondence; i.e. 2.5V
corresponds to logic level 0.5, etc.

The experiments were performed both in software (Spice simulations, extrinsic evolution) and in hardware (intrinsic

evolution) using either one or two FPTA cells on a chip. The experiments used a population size of 128 individuals,
were performed for 400 generations (with uniform crossover, 70% crossover rate, 4% mutation rate, tournament
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selection) and took around 15 minutes using 16 processors when evolving in simulations. Each switch in FPTA cell
has an associated control bit in a direct mapping. Thus there are 24 bits in the chromosome describing one cell.
Interconnection experiments were done mostly with 4 bits. Thus a 2 cell experiment would use 52bits (24*2+4).

Figure 10, as an example, shows the response of circuits targeting the implementation of fundamental T-norms for
s=100. The diamond symbol (0) marks points of simulated/measured response of evolved circuit, while the cross
symbol (+) marks the points of an ideal/target response for the given inputs. The output (T) is mapped on the
vertical axis; values on axis are in Volts. The circuit responses for other s values such as s=0 and s=10 were similar.
The circuits for T- & S-norm with s=100 were mapped on two FPTA cells. Figure 11 shows the diagonal cut for the
same S-norm. All these responses were for circuits evolved in software.

For comparison, the response of a circuit evolved in hardware (for s=100) is shown in Figure 12, whereas the
convergence toward solution can be seen in Figure 13. Sometimes the actual response (Figure 12) has a higher
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Figure 10. Response of a circuit implementing the Figure 11. Diagonal cut for the response for the
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voltage value (¢ above +) than the ideal response for that input pair and sometimes it has a lower value (¢ below +).
The errors are observed mainly at the domain extremes. Figure 13, where a function of the error of best individual is
plotted across the number of generations, clearly shows decreasing error between best individual in each generation
and target circuit, for the three software evolved circuits, with s=0, s=1, and s=100.

5. DISCUSSIONS:

The purpose of the results presented in this paper is to illustrate what can be obtained in a rapid evolution, with no
prior knowledge on the circuit solution, with no optimization in terms of width (W) and length (L) of transistor
channels, with limited resources (only those found in two FPTA cells). One limitation is the approximation error,
ranging from 3.6% to a maximum of 9% MAPE (Mean Absolute Percent Error) in software and to a peak of 11.6%
in hardware. Several factors can contribute to reducing the approximation error. One of them is to allow more
flexibility in the selection of the points where the inputs are applied, and where the output is collected from. In this
experiment, these were considered predetermined, however it is possible to let evolution decide where to interface
the circuit with the input/output. '

Another way to increase the approximation power is to allow more resources, e.g. allow resources from more than 2
cells. This is similar to increasing the approximation power of neural networks when extra neurons are added. The
described experiments do not have any parametric adjustment. The width and length of the transistor channel were
considered fixed. However previous results indicate that parametric optimization can produce good adjustments

after the topology has been determined [29]. This will also be possible in hardware since the new version of the
chip will allow switch-selectable transistors with different W/L in the same cell [30].

These results are preliminary and are presented mainly to illustrate some aspects of the application of EHW to
synthesis of electronic circuits implementing combinatorial fuzzy logic functions. No comparison with any state-of-
the-art design tools is made, and, of course, the performance of (computer-assisted) human solutions could exceed
the performance of the totally automated solutions illustrated here. However, to the best of our knowledge,
complete automated design of the type presented here is not available with any other tool. Moreover, we believe
that completely automated techniques of the kind presented here will surpass current design techniques within near
future. The role of the humans would shift toward providing specifications and evolutionary pressures to guide the
design to the desired result (which is not a trivial task).

6. CONCLUSIONS:

This paper presented our research in soft computing with dual focus of enabling architectures and high-speed
parallel processing hardware. Results clearly demonstrate the orders of magnitude speed advantage with power-
miser chip designs, predominantly in analog. In addition, an effort toward building evolution-oriented devices and
tests have demonstrated how electronic circuits can be automatically synthesized, on the chip, to produce a desired
circuit functionality. It illustrated the aspects of using evolvable hardware for the design of unconventional circuits
such as combinatorial circuits for fuzzy logic.
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